Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study
نویسندگان
چکیده
Evolutionary algorithms are adaptive methods based on natural evolution that may be used for search and optimization. As data reduction in knowledge discovery in databases (KDDs) can be viewed as a search problem, it could be solved using evolutionary algorithms (EAs). In this paper, we have carried out an empirical study of the performance of four representative EA models in which we have taken into account two different instance selection perspectives, the prototype selection and the training set selection for data reduction in KDD. This paper includes a comparison between these algorithms and other nonevolutionary instance selection algorithms. The results show that the evolutionary instance selection algorithms consistently outperform the nonevolutionary ones, the main advantages being: better instance reduction rates, higher classification accuracy, and models that are easier to interpret.
منابع مشابه
IFSB-ReliefF: A New Instance and Feature Selection Algorithm Based on ReliefF
Increasing the use of Internet and some phenomena such as sensor networks has led to an unnecessary increasing the volume of information. Though it has many benefits, it causes problems such as storage space requirements and better processors, as well as data refinement to remove unnecessary data. Data reduction methods provide ways to select useful data from a large amount of duplicate, incomp...
متن کاملA Study on the Combination of Evolutionary Algorithms and Stratified Strategies for Training Set Selection in Data Mining
Evolutionary algorithms are adaptive methods based on natural evolution that may be used for search and optimization. As Training Set Selection can be viewed as a search problem, it could be solved using evolutionary algorithms. In this paper, we have carried out an empirical study of the performance of CHC as representative evolutionary algorithm model. This study includes a comparison between...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملComparison of particle swarm optimization and tabu search algorithms for portfolio selection problem
Using Metaheuristics models and Evolutionary Algorithms for solving portfolio problem has been considered in recent years.In this study, by using particles swarm optimization and tabu search algorithms we optimized two-sided risk measures . A standard exact penalty function transforms the considered portfolio selection problem into an equivalent unconstrained minimization problem. And in final...
متن کاملMulti-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Evolutionary Computation
دوره 7 شماره
صفحات -
تاریخ انتشار 2003